Self-similar expanding solutions for the planar network flow
نویسندگان
چکیده
We prove the existence of self-similar expanding solutions of the curvature flow on planar networks where the initial configuration is any number of half-lines meeting at the origin. This generalizes recent work by Schnürer and Schulze which treats the case of three half-lines. There are multiple solutions, and these are parametrized by combinatorial objects, namely Steiner trees with respect to a complete negatively curved metric on the unit ball which span k specified points on the boundary at infinity. We also provide a sharp formulation of the regularity of these solutions at t = 0.
منابع مشابه
Uniqueness of Self-similar Solutions to the Network Flow in a given Topological Class
The flow of planar networks by curve shortening flow has been of interest for several authors in last few years (see [MNT], [Sch], [SS] and [MS] for example). A planar network in Ω ⊂ R2 is a finite union of arcs embedded on the plane such that each pair of curves may intersect each other only at their ends. Moreover, these ends always intersect either other arc or ∂Ω. These intersections are ca...
متن کاملTraveling Waves of Some Symmetric Planar Flows of Non-Newtonian Fluids
We present some variants of Burgers-type equations for incompressible and isothermal planar flow of viscous non-Newtonian fluids based on the Cross, the Carreau and the power-law rheology models, and on a symmetry assumption on the flow. We numerically solve the associated traveling wave equations by using industrial data and in order to validate the models we prove existence and uniqueness of ...
متن کاملAixsymmetric Stagnation Point Flow of a Viscous Fluid on a Moving Cylinder with Time Dependent Axial Velocity
The unsteady viscous flow in the vicinity of an axisymmetric stagnation point of an infinite moving cylinder with time-dependent axial velocity is investigated. The impinging free stream is steady with a strain rate k. An exact solution of the Navier-Stokes equations is derived in this problem. A reduction of these equations is obtained by use of appropriate transformations. The general self-si...
متن کاملSelf-similar solutions of the Riemann problem for two-dimensional systems of conservation laws
In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem
متن کاملEntire Self-similar Solutions to Lagrangian Mean Curvature Flow
Abstract. We consider self-similar solutions to mean curvature evolution of entire Lagrangian graphs. When the Hessian of the potential function u has eigenvalues strictly uniformly between −1 and 1, we show that on the potential level all the shrinking solitons are quadratic polynomials while the expanding solitons are in one-to-one correspondence to functions of homogenous of degree 2 with th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007